


## YJL07P03AL



# P-Channel Enhancement Mode Field Effect Transistor



## **Product Summary**

V<sub>DS</sub> -30V
 I<sub>D</sub> -7.0A
 R<sub>DS(ON)</sub>( at V<sub>GS</sub>=-10V) <25mohm</li>

<36mohm

• R<sub>DS(ON)</sub>( at V<sub>GS</sub>=-4.5V)

- General Description
  Trench Power LV MOSFET technology
- High density cell design for Low R<sub>DS(ON)</sub>
- High Speed switching

#### **Applications**

- Battery protection
- Load switch
- Power management

■ Absolute Maximum Ratings (T<sub>A</sub>=25°C unless otherwise noted)

|                                   | Parameter                                             | Symbol           | Maximum     | Unit       |  |
|-----------------------------------|-------------------------------------------------------|------------------|-------------|------------|--|
| Drain-source Voltage              |                                                       | $V_{DS}$         | -30         | V          |  |
| Gate-source Voltage               |                                                       | $V_GS$           | ±20         | V          |  |
| Drain Current                     | T <sub>A</sub> =25℃ @ Steady State                    | I <sub>D</sub>   | -7.0        | А          |  |
| Drain Current                     | T <sub>A</sub> =70℃ @ Steady State                    | ID               | ±20<br>-7.0 |            |  |
| Pulsed Drain Current <sup>A</sup> |                                                       | I <sub>DM</sub>  | -50         | Α          |  |
| Total Power Dissipation @ 1       | Total Power Dissipation @ T <sub>A</sub> =25℃         |                  | 1.9         | W          |  |
| Thermal Resistance Junctio        | n-to-Ambient @ Steady State <sup>B</sup>              | R <sub>eJA</sub> | 65.7        | °C/W       |  |
| Junction and Storage Tempo        | ge Temperature Range T <sub>J</sub> ,T <sub>STG</sub> |                  | -55~+150    | $^{\circ}$ |  |

■ Ordering Information (Example)

| PR | REFERED P/N | PACKING<br>CODE | Marking | MINIMUM<br>PACKAGE(pcs) | INNER BOX<br>QUANTITY(pcs) | OUTER CARTON<br>QUANTITY(pcs) | DELIVERY MODE |
|----|-------------|-----------------|---------|-------------------------|----------------------------|-------------------------------|---------------|
| Y  | JL07P03AL   | F2              | 3007.   | 3000                    | 30000                      | 120000                        | 7" reel       |



# YJL07P03AL

#### ■ Electrical Characteristics (T<sub>J</sub>=25°C unless otherwise noted)

| Parameter Symbol Condition            |                     | Conditions                                                          | Min  | Тур  | Max  | Units |
|---------------------------------------|---------------------|---------------------------------------------------------------------|------|------|------|-------|
| Static Parameter                      |                     |                                                                     |      |      |      |       |
| Drain-Source Breakdown Voltage        | BV <sub>DSS</sub>   | V <sub>GS</sub> = 0V, I <sub>D</sub> =-250μA                        | -30  |      |      | V     |
| Zero Gate Voltage Drain Current       | I <sub>DSS</sub>    | V <sub>DS</sub> =-30V,V <sub>GS</sub> =0V,T <sub>C</sub> =25°C      |      |      | -1   | μΑ    |
| Gate-Body Leakage Current             | I <sub>GSS</sub>    | $V_{GS}$ = $\pm 20V$ , $V_{DS}$ = $0V$                              |      |      | ±100 | nA    |
| Gate Threshold Voltage                | V <sub>GS(th)</sub> | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> =-250μA          | -1.0 | -1.5 | -2.5 | V     |
| Otatis Paris Oceano On Paristance     |                     | V <sub>GS</sub> = -10V, I <sub>D</sub> =-7.0A                       |      | 18.5 | 25   | mΩ    |
| Static Drain-Source On-Resistance     | R <sub>DS(ON)</sub> | V <sub>GS</sub> = -4.5V, I <sub>D</sub> =-5.0A                      |      | 24.5 | 36   |       |
| Diode Forward Voltage                 | V <sub>SD</sub>     | I <sub>S</sub> =-7.0A,V <sub>GS</sub> =0V                           |      | -0.8 | -1.2 | V     |
| Maximum Body-Diode Continuous Current | Is                  |                                                                     |      |      | -7.0 | А     |
| Dynamic Parameters                    |                     |                                                                     |      |      |      |       |
| Input Capacitance                     | C <sub>iss</sub>    |                                                                     |      | 1500 |      | pF    |
| Output Capacitance                    | Coss                | V <sub>DS</sub> =-15V,V <sub>GS</sub> =0V,f=1MHZ                    |      | 178  |      |       |
| Reverse Transfer Capacitance          | C <sub>rss</sub>    |                                                                     |      | 146  |      |       |
| Switching Parameters                  |                     |                                                                     |      |      |      |       |
| Total Gate Charge                     | Qg                  |                                                                     |      | 28.7 |      | nC    |
| Gate Source Charge                    | $Q_{gs}$            | V <sub>GS</sub> =-10V,V <sub>DS</sub> =-15V,I <sub>D</sub> =-6.0A   |      | 5.5  |      |       |
| Gate Drain Charge                     | $Q_{gd}$            |                                                                     |      | 5.4  |      |       |
| Reverse Recovery Charge               | Q <sub>rr</sub>     | L - 04 didb-5004/v-                                                 |      | 6.0  |      |       |
| Reverse Recovery Time                 | t <sub>rr</sub>     | I <sub>F</sub> = -9A, di/dt=500A/us                                 |      | 14   |      |       |
| Turn-on Delay Time                    | t <sub>D(on)</sub>  |                                                                     |      | 10   |      |       |
| Turn-on Rise Time                     | t <sub>r</sub>      | V <sub>GS</sub> =-10V,V <sub>DS</sub> =-15V, I <sub>D</sub> =-6.0A, |      | 44   |      | ns    |
| Turn-off Delay Time                   | $t_{D(off)}$        | R <sub>GEN</sub> =2.5Ω                                              |      | 54   |      |       |
| Turn-off Fall Time                    | t <sub>f</sub>      |                                                                     |      | 59   |      |       |

A. Pulse Test: Pulse Width  $\leqslant$  300us, Duty cycle  $\leqslant$  2%.

B.  $R_{\theta JA}$  is the sum of the junction-to-lead and lead-to-ambient thermal resistance, where the lead thermal reference is defined as the solder mounting surface of the drain pins.  $R_{\theta JA}$  is guaranteed by design, while  $R_{\theta JA}$  is determined by the board design. The maximum rating presented here is based on mounting on a 1 in 2 pad of 2oz copper.



#### **■ Typical Performance Characteristics**

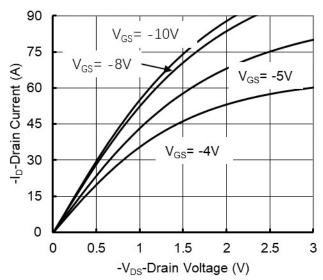



Figure 1. Output Characteristics

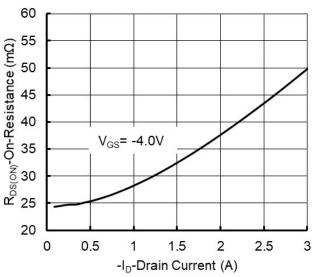



Figure 3. On-Resistance vs. Drain Current and Gate Voltage

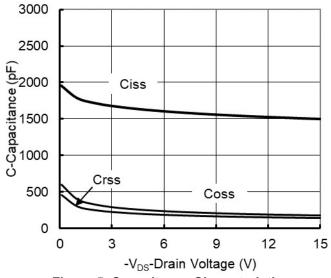



Figure 5. Capacitance Characteristics

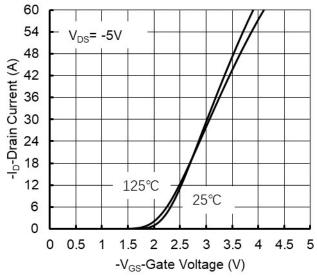



Figure 2. Transfer Characteristics

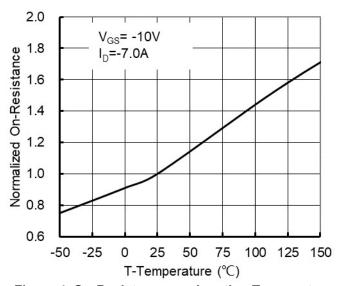



Figure 4. On-Resistance vs. Junction Temperature

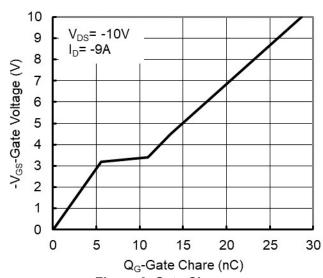
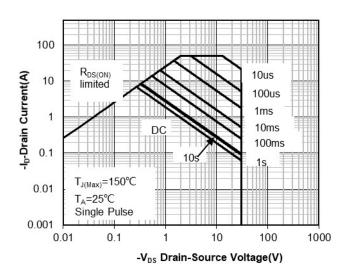




Figure 6. Gate Charge







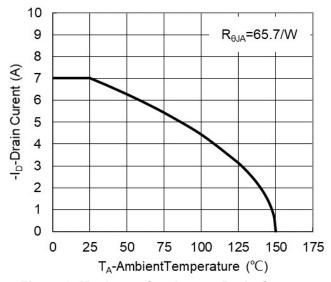
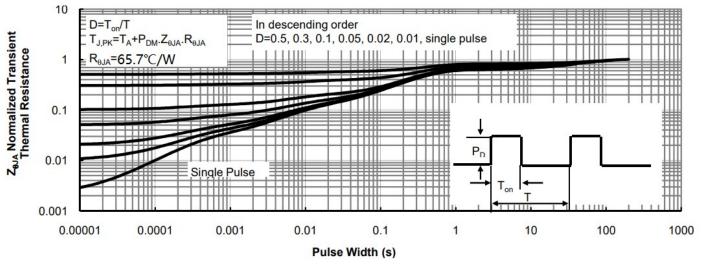
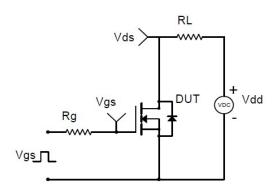
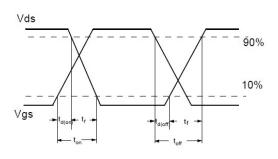
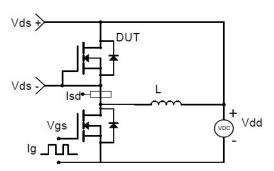
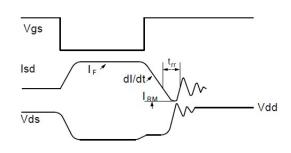



Figure 7. Safe Operation Area

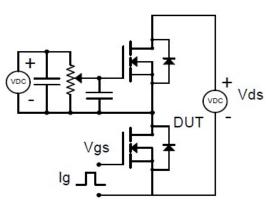
Figure 8. Maximum Continuous Drain Current vs Ambient Temperature

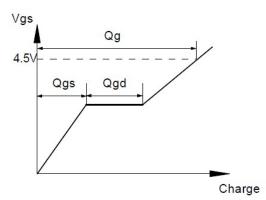






Figure 9. Normalized Maximum Transient Thermal Impedance

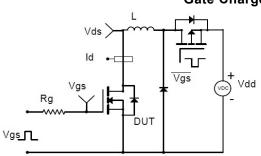


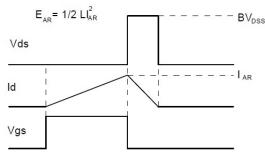




## **Resistive Switching Test Circuit & Waveforms**







## **Diode Recovery Test Circuit & Waveforms**

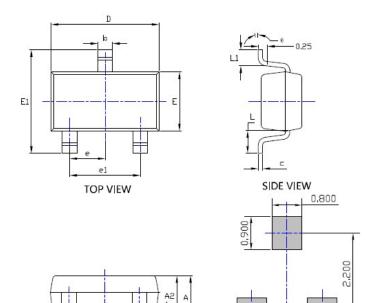




## Gate Charge Test Circuit & Waveform






**Unclamped Inductive Switching (UIS) Test Circuit & Waveforms** 





SIDE VIEW

# ■ SOP-23-3L Package information



SUGGESTED SOLDER PAD LAYOUT

0.950

UNIT: mm

0.950

|        | 92       | 0.000 Pers | DIMENS | SIDNS      |       |       |  |
|--------|----------|------------|--------|------------|-------|-------|--|
| SYMBOL | INCHES   |            |        | Millimeter |       |       |  |
|        | MIN.     | NDM,       | MAX.   | MIN.       | NDM,  | MAX.  |  |
| Α      | 0.041    |            | 0.049  | 1.050      |       | 1.250 |  |
| A1     | 0.000    |            | 0.008  | 0.000      |       | 0.200 |  |
| A2     | 0.041    | 0.043      | 0.045  | 1,050      | 1.100 | 1,150 |  |
| lo     | 0.012    | 0.016      | 0.020  | 0.300      | 0.400 | 0.500 |  |
| C      | 0.004    |            | 0.008  | 0,100      |       | 0,200 |  |
| D      | 0.111    | 0,115      | 0.119  | 2,820      | 2.920 | 3.020 |  |
| Ε      | 0.059    | 0.063      | 0.067  | 1.500      | 1.600 | 1,700 |  |
| E1     | 0.104    | 0.110      | 0.116  | 2.650      | 5.800 | 2.950 |  |
| 6      | 0.037TYP |            |        | 0.950TYP   |       |       |  |
| e1     | 0.071    | 0.075      | 0.079  | 1.800      | 1.900 | 2.000 |  |
| L      | 0.024REF |            |        | 0.600REF   |       |       |  |
| L1     | 0.012    | 0.018      | 0.240  | 0.300      | 0.450 | 0.600 |  |
| 9      | 0.       | C          | 8.     | 0*         |       | 8*    |  |

- NOTE: 1,PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- 2, TOLERANCE 0, 1mm UNLESS OTHERWISE SPECIFIED.
- 3.THE PAD LAYOUT IS FOR REFERENCE PURPOSES ONLY.



## YJL07P03AL

#### **Disclaimer**

The information presented in this document is for reference only. Yangzhou Yangjie Electronic Technology Co., Ltd. reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Yangjie or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale.

This publication supersedes & replaces all information previously supplied. For additional information, please visit our website http:// <a href="www.21yangjie.com">www.21yangjie.com</a>, or consult your nearest Yangjie's sales office for further assistance.